Purpose
The principal concern of organization managers in the global rivalry of commerce environment is how to select the project portfolio among available projects. In this matter, organizations should consider the uncertainty intrinsic in the projects regarding an appropriate valuation technique within an optimization framework. In this research, the purpose of this paper is to formulate using a robust optimization algorithm to deal with the complexities and uncertainty inherent in the construction of the project portfolio.
Design/methodology/approach
First, a general mathematical formulation is presented, which in compound real options valuation is highlighted. This formulation gives managerial flexibility by correcting the deficiency of traditional discounted cash flow technique that excludes any form of flexibility. Then, considering a limitation on budget of the organization, an integer programming formulation to maximize the n-fold compound options for project portfolio selection is proposed. Finally, a robust optimization model is developed along with the robust combinatorial optimization algorithm, which is effective for solving problems under uncertainty.
Findings
Sensitivity analysis showed that projects in later phases of development, having survived several phases of pre-clinical and clinical tests, are worth more because they are more likely to pertain to business. However, the investment costs related to each project during development phases limit the number of projects that a company can bring to their final portfolio. Additionally, the analysis of conservatism level represented how project managers can quite easily determine their risk attitude and the corresponding portfolio composition. From a managerial point of view, the proposed framework is very useful because it requires only financial estimates. Hence, the proposed decision support tool can assist research and development (R&D) project managers in the pharmaceutical industry for making decisions.
Originality/value
The first is the application of the n-fold compound options on portfolio of R&D projects and the employment of compound options value of a project portfolio as an objective function. The second one is a mathematical formulation of these concepts and solving it by the robust combinatorial optimization algorithm. The literature is lacking in the application of the robust combinatorial optimization algorithm to R&D project portfolio selection based on the generalized n-fold compound option model of Cassimon et al. (2004). Every framework from calculation of the n-fold compound option to solving robust combinatorial algorithm is programmed in Matlab software, since it can be used as a business support tool.