Plastic pollution is a pervasive problem. In the environment, both the physical and chemical aspects of the material contribute to pollution. For instance, discarded plastic is useless waste that is fragmented upon degradation and so-called microplastics <5 mm are formed. Besides, the chemicals added into plastics are usually customized for specific functions, but these can easily transfer from the polymer into an ambient medium. This work examined both of these aspects. Moreover, the question of whether ecotoxicological effects are more likely to appear because of the microparticle properties or the chemicals transferring from the microplastics was addressed. A special focus was laid on the UV-weathering-induced chemical release. First, conventional and biodegradable plastics made from fossil and bio-based resources were chosen. The different materials (pre-production and recycled pellets as well as final products)were weathered and their leachates evaluated in vitro. The leachates were analyzed with nontarget screening in order to measure the number of transferred chemicals. Plastics identified as toxic were subjected to further investigations in vivo. A biodegradable shampoo bottle was processed to microplastics and the particles’ physical and chemical properties were assessed with the freshwater worm Lumbriculus variegatus. Here, commonly used endpoints such as mortality, reproduction and weight were tested via different exposure routes. Moreover, the freshwater shrimp Neocaridina palmata was exposed to microplastic beads and fragments to clarify if the shape of the particles affects the ingestion and egestion, respectively. Thereafter, two materials that displayed the strongest toxic responses in vitro within the first study were weathered and leached. Finally, the shrimps were exposed to the leachates and the locomotor behavior was used as an ecologically relevant but less frequently studied endpoint. The results of the studies highlight that plastics are chemically complex mixtures, containing a wide range of chemicals in terms of the number and functionality. These chemicals induced oxidative stress, baseline toxicity and endocrine activities. This shows that pellets represent a processing state that comprises chemically heterogenous materials. Moreover, it was shown that a degradation initiator is not necessarily relevant to trigger inherent substances to leach out from plastics. Despite this, the UV-weathering resulted in increasingly released chemicals and exacerbated the in vitro toxicities. Even plastics assessed as toxicologically harmless prior to weathering released toxic chemical mixtures once they were weathered. One recycled and all of the biodegradable plastics were toxicologically most concerning. This means that such materials are currently not better than conventional, virgin plastics in terms of their toxicity. To clarify the source of the microplastic toxicity, L. variegatus was exposed to biodegradable microplastics. The particles were ingested by the worms and adversely affected the examined endpoints. In comparison, microplastics that were depleted from their chemicals via a solvent treatment were less toxic. Kaolin as a natural particle control was evaluated alongside and positively affected the weight of the worms. This emphasizes the ecological relevance of fine-sized matter for the test species. The chemicals extracted from the microplastics induced a 100% mortality. A chemical analysis of the material revealed two ecotoxicologically relevant biocides. The physically-mediated effects of the microplastics seemed to be less of a concern for the worms, which is probably linked to their adaptation to high concentrations of naturally occurring particles in the environment. However, the effects related to the chemicals of plastic cannot be ignored, especially for materials that are claimed to be environmentally friendly. In the third study, the role of the particle shape in the gut passaging of N. palmata was studied. While the particle size was a determinant factor for the ingestion, the ingestion and egestion of the beads and fragments did not differ, respectively. The shrimps ingested less fragments when food was provided than in the absence of food. As for the worms, the shrimps are known to ingest many naturally occurring particles. Their unselective feeding behavior towards the particle shape could indicate that microplastics as a physical pollutant are negligible for the shrimps. That is why the chemicals of the two most toxic in vitro materials were tested with N. palmata. However, no trend towards elevated or reduced movements of the shrimps was observed, even though the leachates contained baseline toxicants. This shows that the in vitro toxicities of plastics are not necessarily indicative for effects to occur at the in vivo level...