Background
Façade technologies are in continuous evolution and the idea to realize buildings equipped with cladding systems capable to undergo significant displacements relatively to the main structure has been considered by many authors as an opportunity to improve their vibration performances.
Method
From a structural dynamics viewpoint, a building with a monolithic Moving Façade is essentially the same thing as a building with a Tuned Mass Damper. However, in the presence of excitations directly acting on the external surface of the building, there may be significant diferences of behavior. In this work, a first step towards a systematic comparison between the performances of buildings with Moving Façades and Tuned Mass Dampers is carried out in the simplest setting of 2 degrees of freedom modeling and harmonic excitation.
Results
Despite the deceptive simplicity of the setting, some of the aspects related to the potential applicability of moving façades to vibration damping and the correlated limitations are discussed and critically analyzed. The analyses show that, depending on the tuning of the system, monolithic Moving Façades could effectively act as vibration absorbers with a potentially high efficiency. However, it turns out that good performances could be realized at the price of extremely large displacements of the façade. The possibility to pursue potential applications of this type of systems seems therefore to be subordinated to the search of solutions to limit such displacements within functionally acceptable ranges.