The deep flux weakening (FW) switching point of the interior permanent magnet synchronous motor (IPMSM) is difficult to track accurately. After entering the deep FW region, the current regulator is easily saturated, and the current following capability is poor. Aiming at these problems, a deep FW control of the IPMSM based on the d-axis current error integral regulator (DCEIR) is proposed. Firstly, the deep FW switching point is accurately calculated by using the maximum torque per volt (MPTV) as the limit of the d-axis current. Secondly, through the study of the voltage deviation, it is found that the q-axis regulating current is related to the DCEIR. On this basis, a new transformation relationship between d-axis current and q-axis current in the deep FW region is obtained. Finally, the simulation and experiment results are compared with the conventional negative d-axis current compensation method (NDCCM). It is verified that the proposed method can successfully restrain the saturation of the current regulator and enhance the current following capability in the deep FW region.