Mammals in drylands face environmental challenges exacerbated by climate change. Currently, human activity significantly impacts these environments, and its effects on the energy demands experienced by individuals have not yet been determined. Energy demand in organisms is managed through elevations in glucocorticoid levels, which also vary with developmental and health states. Here, we assessed how anthropization, individual characteristics, and seasonality influence hair glucocorticoid concentration in the Darwin’s leaf-eared mouse (Phyllotis darwini) inhabiting two areas with contrasting anthropogenic intervention in a semi-arid ecosystem of northern Chile. Hair samples were collected (n = 199) to quantify hair corticosterone concentration (HCC) using enzyme immunoassays; additionally, sex, body condition, and ectoparasite load were recorded. There were no differences in HCC between anthropized areas and areas protected from human disturbance; however, higher concentrations were recorded in females, and seasonal fluctuations were experienced by males. The results indicate that animals inhabiting semi-arid ecosystems are differentially stressed depending on their sex. Additionally, sex and season have a greater impact on corticosterone concentration than anthropogenic perturbation, possibly including temporal factors, precipitation, and primary production. The influence of sex and seasonality on HCC in P. darwini make it necessary to include these variables in future stress assessments of this species.