This chapter is dedicated to modeling, system identification, and control of electromagnetic actuators with the main focus on the actuators used in magnetic levitation, in fuel injection systems, and in variable valve timing (VVT). These actuators have a simple structure, good reliability, and low manufacturing costs. However, from control viewpoint, they are nonlinear systems and are open-loop unstable. Therefore, mathematical modeling, system identification-based parameter estimation, and control strategies are presented, when the moving armature is controlled around an equilibrium position or is controlled between the two extreme positions of the armature.