Traditionally, active compounds were discovered from natural product extracts by bioassay-guided fractionation, which was with high cost and low efficiency. A well-trained support vector regression model based on mean impact value was used to identify lead active compounds on inhibiting the proliferation of the HeLa cells in curcuminoids from Curcuma longa L. Eight constituents possessing the high absolute mean impact value were identified to have significant cytotoxicity, and the cytotoxic effect of these constituents was partly confirmed by subsequent MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and previous reports. In the dosage range of 0.2-211.2, 0.1-140.2, 0.2-149.9 μm, 50% inhibiting concentrations (IC50 ) of curcumin, demethoxycurcumin, and bisdemethoxycurcumin were 26.99 ± 1.11, 19.90 ± 1.22, and 35.51 ± 7.29 μm, respectively. It was demonstrated that our method could successfully identify lead active compounds in curcuminoids from Curcuma longa L. prior to bioassay-guided separation. The use of a support vector regression model combined with mean impact value analysis could provide an efficient and economical approach for drug discovery from natural products.