We study the asymptotic behavior of the competitive Leslie/Gower model (map) [Formula: see text]It is shown that T unconditionally admits a globally attracting 1-codimensional invariant hypersurface [Formula: see text], called carrying simplex, such that every nontrivial orbit is asymptotic to one in [Formula: see text]. More general and easily checked conditions to guarantee the existence of carrying simplex for competitive maps are provided. An equivalence relation is defined relative to local stability of fixed points on [Formula: see text] (the boundary of [Formula: see text]) on the space of all three-dimensional Leslie/Gower models. Using a formula on the sum of the indices of all fixed points on the carrying simplex for three-dimensional maps, we list the 33 stable equivalence classes in terms of simple inequalities on the parameters [Formula: see text] and [Formula: see text] and draw their orbits on [Formula: see text]. In classes 1-18, every nontrivial orbit tends to a fixed point on [Formula: see text]. In classes 19-25, each map possesses a unique positive fixed point which is a saddle on [Formula: see text], and hence Neimark-Sacker bifurcations do not occur. Neimark-Sacker bifurcation does occur within each of classes 26-31, while it does not occur in class 32. Each map from class 27 admits a heteroclinic cycle, which forms the boundary of [Formula: see text]. The criteria on the stability of heteroclinic cycles are also given. This classification makes it possible to further investigate various dynamical properties in respective class.
We propose the generalized competitive Atkinson-Allen mapwhich is the classical Atkson-Allen map when r i = 1 and c i = c for all i = 1, ..., n and a discretized system of the competitive Lotka-Volterra equations.It is proved that every n-dimensional map T of this form admits a carrying simplex Σ which is a globally attracting invariant hypersurface of codimension one. We define an equivalence relation relative to local stability of fixed points on the boundary of Σ on the space of all such three-dimensional maps. In the three-dimensional case we list a total of 33 stable equivalence classes and draw the corresponding phase portraits on each Σ. The dynamics of the generalized competitive Atkinson-Allen map differs from the dynamics of the standard one in that Neimark-Sacker bifurcations occur in two classes for which no such bifurcations were possible for the standard competitive Atkinson-Allen map.We also found Chenciner bifurcations by numerical examples which implies that two invariant closed curves can coexist for this model, whereas those have
We concentrate on the effects of heteroclinic cycles and the interplay of heteroclinic attractors or repellers on the boundary of the carrying simplices for low-dimensional discrete-time competitive systems. Based on the existence of the carrying simplex for the competitive mapping, we provide the criteria on stability of the heteroclinic cycle. This result can be seen as a discrete counterpart of that for the continuous-time systems. Several concrete discrete-time competition models are further analyzed, which do admit heteroclinic cycles. The criteria on the stability of the heteroclinic cycle for each model are also given, which are comparable with the corresponding continuous-time models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.