2013
DOI: 10.1145/2427023.2427029
|View full text |Cite
|
Sign up to set email alerts
|

Variants of Mersenne Twister Suitable for Graphic Processors

Abstract: This article proposes a type of pseudorandom number generator, Mersenne Twister for Graphic Processor (MTGP), for efficient generation on graphic processessing units (GPUs). MTGP supports large state sizes such as 11213 bits, and uses the high parallelism of GPUs in computing many steps of the recursion in parallel. The second proposal is a parameter-set generator for MTGP, named MTGP Dynamic Creator (MTG-PDC). MTGPDC creates up to 2 32 distinct parameter sets which generate sequences with high-dimensional uni… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
62
0
1

Year Published

2013
2013
2022
2022

Publication Types

Select...
6
2
2

Relationship

0
10

Authors

Journals

citations
Cited by 57 publications
(63 citation statements)
references
References 21 publications
0
62
0
1
Order By: Relevance
“…Para nuestro trabajo hemos usado un generador aleatorio Mersenne Twister [36]. Al comienzo de la ejecución el GPU-DFA define una semilla global con la cual se inicializa una semilla local en cada hilo.…”
Section: Generación De Números Aleatoriosunclassified
“…Para nuestro trabajo hemos usado un generador aleatorio Mersenne Twister [36]. Al comienzo de la ejecución el GPU-DFA define una semilla global con la cual se inicializa una semilla local en cada hilo.…”
Section: Generación De Números Aleatoriosunclassified
“…In this study, we use two different generation states to have completely different two 1000-element arrays. One of them generated by MTGP32 pseudorandom sequence generator which is an NVIDIA's adaption of an algorithm proposed by Saito et al [13]. The other state we used is CURAND's default state which generates an array of pseudorandom numbers greater than 2 190 .…”
Section: Exon Shuffling Crossovermentioning
confidence: 99%
“…Another approach to produce multiple streams uses a different RNG or a different set of RNG parameters for each stream (Mascagni andSrinivasan 2000, Saito andMatsumoto 2013). This is generally much less convenient than using the same RNG (and same code) for all streams, for many reasons (L 'Ecuyer et al 2015).…”
Section: Making and Managing Multiple Streamsmentioning
confidence: 99%