Proteomics-a systematic study of proteins present in a cell, tissue, organ, or organism at a particular moment during the life cycle-that began with classical two-dimensional electrophoresis and its advancement during the 1990s, has been revolutionized by a series of tremendous technological developments in mass spectrometry (MS), a core technology. Proteomics is exerting its influence on biological function of genes and genomes in the era (21st century) of functional genomics, and for this reason yeast, bacterial, and mammalian systems are the best examples. Although plant proteomics is still in its infancy, evolving proteomic technologies and the availability of the genome sequences of Arabidopsis thaliana (L.) Heyhn, and rice (Oryza sativa L.), model dicotyledoneous and monocotyledoneous (monocot) species, respectively, are propelling it towards new heights, as evidenced by the rapid spurt in worldwide plant proteome research. Rice, with an immense socio-economic impact on human civilization, is a representative model of cereal food crops, and we consider it as a cornerstone for functional genomics of cereal plants. In this review, we look at the history and the current state of monocot proteomes, including barley, maize, and wheat, with a central focus on rice, which has the most extensive proteomic coverage to date. On one side, we highlight advances in technologies that have generated enormous amount of interest in plant proteomics, and the other side summarizes the achievements made towards establishing proteomes during plant growth & development and challenge to environmental factors, including disease, and for studying genetic relationships. In light of what we have learned from the proteomic journey in rice and other monocots, we finally reveal and assess their impact in our continuous strive towards completion of their full proteomes.