Primary infection by varicella zoster virus (VZV) typically results in childhood chickenpox, at which time latency is established in the neurons of the cranial nerve, dorsal root and autonomic ganglia along the entire neuraxis. During latency, the histone-associated virus genome assumes a circular episomal configuration from which transcription is epigenetically regulated. The lack of an animal model in which VZV latency and reactivation can be studied, along with the difficulty in obtaining high-titer cell-free virus, has limited much of our understanding of VZV latency to descriptive studies of ganglia removed at autopsy and analogy to HSV-1, the prototype alphaherpesvirus. However, the lack of miRNA, detectable latency-associated transcript and T-cell surveillance during VZV latency highlight basic differences between the two neurotropic herpesviruses. This article focuses on VZV latency: establishment, maintenance and reactivation. Comparisons are made with HSV-1, with specific attention to differences that make these viruses unique human pathogens.