This study has explored the fact that geraniol prevents isoproterenol (ISO)-induced oxidative stress and inflammation-mediated myocardial infarction (MI) through enhanced expression of peroxiredoxin-1 (Prdx-1) in experimental animal models. The experimental strategies of MI were stimulated through the subcutaneous direction of ISO (85 mg/kg body weight) for 14 days. ISO-directed models showed elevated heart rate levels and cardiac markers (serum creatine kinase [CK], serum CKmyocardial band, serum C-reactive proteins, and plasma homocysteine); increased cardiac-troponins-T, and troponin-I levels in both serum and myocardium. Moreover, we perceived that a higher level of lipid peroxidation molecules (thiobarbituric acid reactive substances and lipid hydroperoxides) reduced the antioxidant enzyme levels in plasma and heart tissue of ISO-directed rats. However, geraniol treatment prevents ISO-directed enhancement of the heart rate, cardiac and lipid peroxidative genes; reverted the blood pressure, and antioxidant status in ISO-directed rats. Furthermore, gene expression results revealed that geraniol treatment inhibited the mitogen-activated protein kinase (MAPK) proteins, inflammatory responder (tumor necrosis factor-α, interleukin 6, nuclear factor-κB), and cardiac fibrotic proteins (matrix metalloproteinase-2[MMP-2], MMP-9) in ISO directed rats. Prdx-1 is an antioxidant response element, and it can regulate all the antioxidant proteins and it scavenges harmful radicals. Therefore, enhanced Prdx-1 expression is considered to have a pivotal role in preventing cardiac infarction. In this study, an elevated expression of Prdx1 was noticed in geraniol treated with ISO-directed rats. Hence, we concluded that geraniol is considered a potential phytodrug, and it prevents ISOdirected MAPKs, inflammation, and cardiac markers by enhancing the expression of Prdx1.