In older adults, isometric force production is enhanced following a voluntary lengthening contraction when compared with isometric force produced at the same muscle length without a prior lengthening contraction. This phenomenon is termed residual force enhancement (RFE), and appears to be related to the age-related maintenance of eccentric (ECC) strength. However, it is unknown whether age-related changes in muscle architecture contribute to greater RFE at short and long muscle lengths in old age. Neuromuscular properties of the knee extensors were assessed on a HUMAC NORM dynamometer. Torque was examined in young (26 ± 3 year, n = 11) and old men (77 ± 6 year, n = 11) during brief maximal voluntary isometric contractions (MVC) at 80° and 120° (180° representing full knee extension) and then compared with torque during a steady-state phase at the same joint angle following a maximal voluntary lengthening contraction at 30°/sec over a 60° joint excursion; either from 140 to 80° (long), or from 180 to 120° (short). Ultrasound images were obtained from the vastus lateralis during the isometric phase for each condition. When comparing the ECC torque with the MVC isometric torque, old men had 17% greater ECC:MVC ratios than young men, confirming an age-related maintenance of ECC strength. The extent of RFE was greater at long versus short but independent of age. At rest, old had shorter (∼18%) and less pennated (∼22%) fascicles. However, changes in fascicle length and pennation during contraction did not contribute to RFE in either group. Thus, age-related changes in muscle architecture may not contribute to RFE.