We report a new illusion of elasticity in a physically rigid moving surface. Consider figure 1 and imagine that the pattern (both the grey and the black regions) is smoothly rotated as a whole around its center by about 30 deg, first in one direction and then back to its original position, through several cycles. Clearly, neither the square nor the black occluding surface undergo any change in size as they undergo these cyclic moviments. However, the occluded grey square frame appears elastic, as if it were contracting and expanding. These contractions and expansions are slight but clearly visible: We have shown the rubber square illusion to a number of visitors and students in our laboratory and we have not found a single observer who did not report it spontaneously. The lack of rigidity of the rotating square is illusory and wholly paradoxical. An obsever can readily become aware of this when fixating one of the sides of the square while attentively ignoring the remainder of the display. When the display is observed as a whole, however, the expansions and contractions become immediately salient.
Relationships to known motion illusionsThe rubber square illusion is related to a number of known illusions whereby processes involved in detecting and identifing surface boundaries from spatiotemporally sparse information undergo partial failures. Such failures are generally understood as providing useful constraints on theories of spatiotemporal boundary formation (1) and on neural models of motion integration that are sensitive to the spatial structure of the stimulus (2)(3) . Specifically, these models call for a fundamental distinction between three kinds of motion signals: perpendicular signals available along contours due to the aperture problem (4) , unambiguous signals at true contour terminaThe rubber square illusion ABSTRACT Keywords: Vision; Motion; Integration; Segmentation; Depth; IllusionsWe report a new illusion of elasticity in a rigid surface. A square frame is presented behind a concentric occluding cross. When the two surfaces are rotated rigidly, the square frame appears "rubbery", that is, it appears to contract or expand during the rotation. The rubber square illusion is related to a number of other illusory phenomena involving motion and surface stratification. It is generally believed that these phenomena are due to suppression of potentially veridical motion signals at t-junctions signalling occlusions. However, in all previously reported phenomena the effect of t-junctions was confounded with effects due to surface relative motion, spatial integration, or relative contrast. Given that none of these potential confounds applies to our demonstration, the rubber square illusion provides critical evidence that t-junctions are sufficient to cause suppression of the corresponding motion signals.