Automated driving and vehicle safety systems need object detection. It is important that object detection be accurate overall and robust to weather and environmental conditions and run in real-time. As a consequence of this approach, they require image processing algorithms to inspect the contents of images. This article compares the accuracy of five major image processing algorithms: Region-based Fully Convolutional Network (R-FCN), Mask Region-based Convolutional Neural Networks (Mask R-CNN), Single Shot Multi-Box Detector (SSD), RetinaNet, and You Only Look Once v4 (YOLOv4). In this comparative analysis, we used a large-scale Berkeley Deep Drive (BDD100K) dataset. Their strengths and limitations are analyzed based on parameters such as accuracy (with/without occlusion and truncation), computation time, precision-recall curve. The comparison is given in this article helpful in understanding the pros and cons of standard deep learning-based algorithms while operating under real-time deployment restrictions. We conclude that the YOLOv4 outperforms accurately in detecting difficult road target objects under complex road scenarios and weather conditions in an identical testing environment.