Pertumbuhan penggunaan kendaraan bermotor untuk transportasi oleh masyarakat terus meningkat seiring waktu. Sebagai lembaga pendidikan tinggi dengan jumlah mahasiswa aktif mencapai angka 31 ribu orang maka Universitas Tanjungpura perlu menyadari bagaimana penggunaan jalan oleh pengendara kendaraan bermotor di Universitas Tanjungpura dalam bagian dari perencanaan pembangunannya untuk menghindari permasalahan yang mungkin timbul dikemudian hari. Penelitian ini bertujuan untuk menghasilkan suatu sistem yang dapat menghitung trafik kendaraan di jalan masuk utama Universitas Tanjungpura. Peneliti menggunakan pendekatan object recognition untuk mengetahui jenis kendaraan yang lewat apakah merupakan kendaraan sepeda motor atau mobil, dimana digunakan metode background subtraction dan pemrosesan morfologi dalam tugas deteksi objek, dan metode Haar cascade classifier dalam tugas klasifikasi jenis kendaraan dari objek yang terdeteksi. Pada penelitian ini dilatih model klasifikasi kendaraan sepeda motor (masuk dan keluar) dengan masing-masing 5000 data latih dan model klasifikasi kendaraan mobil (masuk dan keluar) dengan masing-masing 500 data latih. Evaluasi pendeteksi objek menunjukkan bahwa program dapat mendeteksi objek yang bergerak dengan akurasi dengan akurasi terendah sebesar 67% dan akurasi tertinggi sebesar 93%. Evaluasi model klasifikasi kendaraan menunjukkan nilai F1-score rata-rata 0.916 (sepeda motor masuk), 0.311 (mobil masuk), 0.965 (sepeda motor keluar) dan 0.427 (mobil keluar). Evaluasi menunjukkan tidak terdapat pengaruh yang signifikan mengenai perbedaan kondisi waktu dan kepadatan trafik kendaraan terhadap performa model klasifikasi kendaraan. Di mana nilai rata-rata f1-score pada pengujian pagi, siang dan sore adalah masing-masing 68%, 62% dan 67% dan rata-rata akurasi pada pengujian padat, sedang dan sepi adalah masing-masing 89%, 86% dan 88%. Hasil pengujian unit testing dan integration testing menunjukkan sistem ini dapat mendeteksi objek kendaraan yang lewat, mengetahui jenis kendaraan tersebut dan menghitung jumlahnya serta menyediakan cara untuk mendapatkan data trafik kendaraan yang dihasilkan. Secara keseluruhan penelitian dinilai berhasil dalam membuat sebuah sistem penghitung trafik kendaraan berbasis object recognition studi kasus jalan utama Universitas Tanjungpura.