Open classical and quantum systems with effective parity-time (PT) symmetry, over the past five years, have shown tremendous promise for advances in lasers, sensing, and nonreciprocal devices. And yet, how such effective PT-symmetric non-Hermitian models emerge out of Hermitian quantum mechanics is not well understood. Here, starting from a fully Hermitian microscopic Hamiltonian description, we show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot (DQD) circuit-QED setup, which can be controllably tuned to the PT-symmetric point. This effective Hamiltonian governs the dynamics of two coupled circuit-QED cavities with a voltage-biased DQD in one of them. Our analysis also reveals the effect of quantum fluctuations on the PT-symmetric system. The PT transition is, then, observed both in the dynamics of cavity observables as well as via an input-output experiment. As a simple application of the PT transition in this setup, we show that loss-induced enhancement of amplification and lasing can be observed in the coupled cavities. By comparing our results with two conventional local Lindblad equations, we demonstrate the utility and limitations of the latter. Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system with a gain medium in the quantum regime, as well as its potential applications for quantum technology.