Discrete-Event Simulation (DES) is a technique in which the simulation engine plays a history following a chronology of events. The technique is called "discrete-event" because the processing of each event of the chronology takes place at discrete points of a continuous timeline. In computer implementations, an event could be represented by a message, and a time occurrence. The message datatype is usually defined as part of the model and the simulator algorithms do not operate with them. Opposite is the case of time variables; simulator has to interact actively with them for reproducing the chronology of events over R + , which is usually represented by approximated datatypes as floating-point (FP). The approximation of time values in the simulation can affect the timeline preventing the generation of correct results. In addition, it is common to collect data from real systems to predict future phenomena, for example for weather forecasting. These data are measured using measuring instruments and procedures. Measurement results obtained never have perfect accuracy. For them, uncertainty quantifications are included, usually as uncertainty intervals. Sometimes, answering questions require evaluating all values in the uncertainty interval. This thesis proposes datatypes for handling representation of time properly in DES, including irrational and periodic time values. Moreover, we propose a method for obtaining every possible simulation result of DES models when feeding them events with uncertainty quantification on their time component. v vi Résumé Amélioration de la représentation du temps dans les simulationsàévénements discrets La simulationàévénements discrets (SED) est une technique dans laquelle le simulateur joue une histoire suivant une chronologie d'événements, chaqueévénement se produisant en des points discrets de la ligne continue du temps. Lors de l'implémentation, unévénement peutêtre représenté par un message et une heure d'occurrence. Le type du message n'est lié qu'au modèle et donc sans conséquences pour le simulateur. En revanche, les variables de temps ont un rôle critique dans le simulateur, pour construire la chronologie desévénements, dans R+. Or ces variables sont souvent représentées par des types de données produisant des approximations, tels que les nombres flottants. Cette approximation des valeurs du temps dans la simulation peut altérer la ligne de temps et conduireà des résultats incorrects. Par ailleurs, il est courant de collecter des donnéesà partir de systèmes réels afin de prédire des phénomènes futurs, comme les prévisions météorologiques. Les résultats de cette collecte,à l'aide d'instruments et procédures de mesures, incluent une quantification d'incertitude, habituellement présentée sous forme d'intervalles. Or répondreà une question requiert parfois l'évaluation des résultats pour toutes les valeurs comprises dans l'intervalle d'incertitude. Cette thèse propose des types de données pour une gestion sans erreur du temps en SED, y compris pour des valeurs irrationnelles et pé...