In the present era, the consensus for blockchain is of three types: consortium/permissioned, decentralized/permissionless, and somewhat decentralized. Presently, security and privacy of blockchain scenarios are in four directions: auditability and transparency, accountability and nonrepudiation, contract privacy, and transactional privacies. Blockchain works on multilayered architectures with its consensus mechanisms. In this paper, important mechanisms of various consensus protocols for application specific usage are analyzed. In general, these consensus mechanisms have four groups of properties; all are examined and discussed. Moreover, the security analysis is shown. Furthermore, the paper examines the elliptic curve digital signature algorithm (ECDSA), which is in use by the cryptocurrencies along with many blockchain-based systems. Moreover, a variant of ECDSA (vECDSA) is also considered. In particular, ECDSA and vECDSA are compared in this research. In addition, modeling and analysis aspects related to the security and concurrency aspects of CPS are discussed. In particular, Petri-net-based models of CPS are considered, especially in terms of liveness and boundedness properties of the system.