The qualitative theory of nomic truth approximation, presented in Kuipers in his (from instrumentalism to constructive realism, 2000), in which 'the truth' concerns the distinction between nomic, e.g. physical, possibilities and impossibilities, rests on a very restrictive assumption, viz. that theories always claim to characterize the boundary between nomic possibilities and impossibilities. Fully recognizing two different functions of theories, viz. excluding and representing, this paper drops this assumption by conceiving theories in development as tuples of postulates and models, where the postulates claim to exclude nomic impossibilities and the (not-excluded) models claim to represent nomic possibilities. Revising theories becomes then a matter of adding or revising models and/or postulates in the light of increasing evidence, captured by a special kind of theories, viz. 'data-theories'. Under the assumption that the data-theory is true, achieving empirical progress in this way provides good reasons for the abductive conclusion that truth approximation has been achieved as well.Here, the notions of truth approximation and empirical progress are formally direct generalizations of the earlier ones. However, truth approximation is now explicitly defined in terms of increasing truth-content and decreasing falsity-content of theories, whereas empirical progress is defined in terms of lasting increased accepted and decreased rejected content in the light of increasing evidence. These definitions are strongly inspired by a paper of Gustavo Cevolani, Vincenzo Crupi and Roberto Festa, viz., "Verisimilitude and belief change for conjunctive theories" (Cevolani et al. in Erkenntnis 75(2):183-222, 2011).