Text search over temporally versioned document collections such as web archives has received little attention as a research problem. As a consequence, there is no scalable and principled solution to search such a collection as of a specified time t. In this work, we address this shortcoming and propose an efficient solution for time-travel text search by extending the inverted file index to make it ready for temporal search. We introduce approximate temporal coalescing as a tunable method to reduce the index size without significantly affecting the quality of results. In order to further improve the performance of time-travel queries, we introduce two principled techniques to trade off index size for its performance. These techniques can be formulated as optimization problems that can be solved to near-optimality. Finally, our approach is evaluated in a comprehensive series of experiments on two large-scale real-world datasets. Results unequivocally show that our methods make it possible to build an efficient "time machine" scalable to large versioned text collections.