Impairment of neuromuscular function in neurological disorders leads to reductions in muscle force, which may lower quality of life. Rehabilitation robots that are equipped with sensors are able to quantify the extent of muscle force impairment and to monitor a patient during the process of neurorehabilitation with sensitive and objective assessment methods. In this article, we provide an overview of fundamental aspects of muscle function and how the corresponding variables can be quantified by means of meaningful robotic assessments that are primarily oriented towards upper limb neurorehabilitation. We discuss new concepts for the assessment of muscle function, and present an overview of the currently available systems for upper limb measurements. These considerations culminate in practical recommendations and caveats for the rational quantification of force magnitude, force direction, moment of a force, impulse, critical force (neuromuscular fatigue threshold) and state and trait levels of fatigue.