Grating couplers are used to efficiently couple light from an optical fibre to a silicon waveguide as they allow light to be coupled into or out from any location on the device without the need for cleaving. However, using the typical surface relief grating fabrication method reduces surface planarity and hence makes further processing more difficult. The ability to manufacture high quality material layers on top of a grating coupler allows multiple active optical layers to be realized for multi-layer integrated optical circuits, and may enable monolithic integration of optical and electronic circuits on separate layers. Furthermore, the nature of the refractive index change may enable removal via rapid thermal annealing for wafer scale testing applications. We demonstrate for the first time a coupling device utilising a refractive index change introduced by lattice disorder. Simulations show 44% of the power can be extracted from the waveguide by using uniform implanted gratings, which is not dissimilar to the performance of typical uniform surface relief gratings currently used. Losses determined empirically, of 5.5dB per coupler have been demonstrated. 5958-5964 (1997). 32. G. F. Cembali, P. G. Merli, and F. Zignani, "Self-annealing of ion-implanted silicon: First experimental results," Appl. Phys. Lett. 38(10), 808-810 (1981 75-77 (2008).