Bordered pits play an important role in permitting water flow among adjacent tracheary elements in flowering plants. Variation in the bordered pit structure is suggested to be adaptive in optimally balancing the conflict between hydraulic efficiency (conductivity) and safety from air entry at the pit membrane (air seeding). The possible function of vestured pits, which are bordered pits with protuberances from the secondary cell wall of the pit chamber, could be increased hydraulic resistance or minimized vulnerability to air seeding. These functional hypotheses have to be harmonized with the notion that the vestured or nonvestured nature of pits contains strong phylogenetic signals (i.e., often characterize large species-rich clades with broad ecological ranges). A literature survey of 11,843 species covering 6,428 genera from diverse climates indicates that the incidence of vestured pits considerably decreases from tropics to tundra. The highest frequencies of vestured pits occur in deserts and tropical seasonal woodlands. Moreover, a distinctly developed network of branched vestures is mainly restricted to warm habitats in both mesic and dry (sub)tropical lowlands, whereas vestures in woody plants from cold and boreal arctic environments are usually minute and simple. A similar survey of the frequency of exclusively scalariform perforation plates illustrates that the major ecological trend of this feature is opposite that of vestured pits. These findings provide previously undescribed insights suggesting that vessels with vestured pits and simple perforation plates function as an efficient hydraulic system in plants growing in warm environments with periodical or continuous drought stress.B otanists have long speculated on the mutual relationship between the structure and function of different wood anatomical features and how ecological conditions correlate with xylem features (1-4). The evolution of xylem vessels has been considered a key adaptation marking the pinnacle of hydraulic efficiency in flowering plants, because plants with vessels generally have higher hydraulic conductivities than plants that rely solely on tracheids for water transport (5). The traditional view is that evolutionary trends of vessel elements have been regarded as reliable tools in the study of angiosperm phylogeny, because vessel characters were considered conservative traits containing a wealth of potentially significant systematic information (2, 6, 7). Although parallel development of vessel characters is generally accepted, recent phylogenetic analyses of angiosperms suggest there have also been some reversals in the Baileyan transformation series (8, 9). Therefore, parallel evolution and reversibility in vessel characters imply a strong adaptive significance of xylem hydraulic architecture.The structure of bordered intervessel pits, which are small openings where the secondary cell wall was not deposited over the primary wall (Figs. 1 and 2 A), permits water flow between adjacent vessels, but pits are also a weak link in pro...