Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The torque vibration derived from in-wheel-motor transmitted to body frame through suspension system without the absorption of mechanical transmission parts, then excited every body panel to shape the vehicle interior noise, which influenced the quality of the vehicle NVH. This paper aims to build an accurate suspension system simulation model to analyze the influence of suspension parts parameters to system vibration transmission property. Basis on a novel empirical model of rubber bushing, a multi-rigid suspension model and a multi-flexible suspension model had been established respectively. The vibration characteristics of two models were simulated, furthermore the swept-sine exciting vertical force signal on wheel contact point were input on the simulation models to find the difference between rigid and flexible model. The simulation results show that: the multi-flexible model can reflect the vibration characteristics of the suspension system more accurately in the high frequency range and so is it more applicable to the simulation analysis of vibration characteristics of in-wheel-motor electric vehicle suspension system.
The torque vibration derived from in-wheel-motor transmitted to body frame through suspension system without the absorption of mechanical transmission parts, then excited every body panel to shape the vehicle interior noise, which influenced the quality of the vehicle NVH. This paper aims to build an accurate suspension system simulation model to analyze the influence of suspension parts parameters to system vibration transmission property. Basis on a novel empirical model of rubber bushing, a multi-rigid suspension model and a multi-flexible suspension model had been established respectively. The vibration characteristics of two models were simulated, furthermore the swept-sine exciting vertical force signal on wheel contact point were input on the simulation models to find the difference between rigid and flexible model. The simulation results show that: the multi-flexible model can reflect the vibration characteristics of the suspension system more accurately in the high frequency range and so is it more applicable to the simulation analysis of vibration characteristics of in-wheel-motor electric vehicle suspension system.
The torque vibration derived from in-wheel-motor transmits to body frame through suspension system without the absorption of mechanical transmission parts, which influenced the quality of the vehicle NVH. This paper aims to build an accurate suspension system model to analyze the vibration transmission property. A multi-rigid suspension model and a multi-flexible suspension model had been established respectively. The vibration characteristics of two models were simulated, furthermore the swept-sine exciting vertical force signal on wheel contact point were input on the simulation models to find the difference between rigid and flexible model. The simulation results show that: the multi-flexible model can more accurately reflect the vibration characteristics of the suspension system in the high frequency range, hence more applicable to the simulation analysis of in-wheel-motor electric vehicle suspension system vibration characteristics. Then the rubber bushing model was replaced with new empirical rubber bushing model, the inherent frequency and the frequency response functions were compared. The results show: The multi-flexible suspension model with new empirical rubber bushing model hasn't notable influence to inherent frequency. However, it can reflect more peak values of frequency response functions and the transmissibility at every peak frequency are higher than the original multi-flexible suspension model. Index Terms-Multi-flexible suspension model, multi-rigid suspension model, new empirical model of rubber bushing, vibration characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.