Externally detected vibroarthrographic (VAG) signals bear diagnostic information related to the roughness, softening, breakdown, or the state of lubrication of the articular cartilage surfaces of the knee joint. Analysis of VAG signals could provide quantitative indices for noninvasive diagnosis of articular cartilage breakdown and staging of osteoarthritis. We propose the use of statistical parameters of VAG signals, including the form factor involving the variance of the signal and its derivatives, skewness, kurtosis, and entropy, to classify VAG signals as normal or abnormal. With a database of 89 VAG signals, screening efficiency of up to 0.82 was achieved, in terms of the area under the receiver operating characteristics curve, using a neural network classifier based on radial basis functions.