Diagnostic features in mammograms vary widely in size and shape. Classical image enhancement techniques cannot adapt to the varying characteristics of such features. An adaptive method for enhancing the contrast of mammographic features of varying size and shape is presented. The method uses each pixel in the image as a seed to grow a region. The extent and shape of the region adapt to local image gray-level variations, corresponding to an image feature. The contrast of each region is calculated with respect to its individual background. Contrast is then enhanced by applying an empirical transformation based on each region's seed pixel value, its contrast, and its background. A quantitative measure of image contrast improvement is also defined based on a histogram of region contrast and used for comparison of results. Using mammogram images digitized at high resolution (less than 0.1 mm pixel size), it is shown that the validity of microcalcification clusters and anatomic details is considerably improved in the processed images.
Fractal analysis has been shown to be useful in image processing for characterizing shape and gray-scale complexity. Breast masses present shape and gray-scale characteristics that vary between benign masses and malignant tumors in mammograms. Limited studies have been conducted on the application of fractal analysis specifically for classifying breast masses based on shape. The fractal dimension of the contour of a mass may be computed either directly from the 2-dimensional (2D) contour or from a 1-dimensional (1D) signature derived from the contour. We present a study of four methods to compute the fractal dimension of the contours of breast masses, including the ruler method and the box counting method applied to 1D and 2D representations of the contours. The methods were applied to a data set of 111 contours of breast masses. Receiver operating characteristics (ROC) analysis was performed to assess and compare the performance of fractal dimension and four previously developed shape factors in the classification of breast masses as benign or malignant. Fractal dimension was observed to complement the other shape factors, in particular fractional concavity, in the representation of the complexity of the contours. The combination of fractal dimension with fractional concavity yielded the highest area (A z ) under the ROC curve of 0.93; the two measures, on their own, resulted in A z values of 0.89 and 0.88, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.