Most benign breast tumors possess well-defined, sharp boundaries that delineate them from surrounding tissues, as opposed to malignant tumors. Computer techniques proposed to date for tumor analysis have concentrated on shape factors of tumor regions and texture measures. While shape measures based on contours of tumor regions can indicate differences in shape complexities between circumscribed and spiculated tumors, they are not designed to characterize the density variations across the boundary of a tumor. In this paper we propose a region-based measure of image edge profile acutance which characterizes the transition in density of a region of interest (ROI) along normals to the ROI at every boundary pixel. We investigate the potential of acutance in quantifying the sharpness of the boundaries of tumors, and propose its application to discriminate between benign and malignant mammographic tumors. In addition, we study the complementary use of various shape factors based upon the shape of the ROI, such as compactness, Fourier descriptors, moments, and chord-length statistics to distinguish between circumscribed and spiculated tumors. Thirty-nine images from the Mammographic Image Analysis Society (MIAS) database and an additional set of 15 local cases were selected for this study. The cases included 16 circumscribed benign, seven circumscribed malignant, 12 spiculated benign, and 19 spiculated malignant lesions. All diagnoses were proven by pathologic examinations of resected tissue. The contours of the lesions were first marked by an expert radiologist using X-Paint and X-Windows on a SUN-SPARCstation 2 Workstation. For computation of acutance, the ROI boundaries were iteratively approximated using a split/merge and end-point adjustment technique to obtain the best-fitting polygonal approximation. The jackknife method using the Mahalanobis distance measure in the BMDP (Biomedical Programs) package was used for classification of the lesions using acutance and the shape factors as features in various combinations. Acutance alone resulted in a benign/malignant classification accuracy of 95% the MIAS cases. Compactness alone gave a circumscribed/spiculated classification rate of 92.3% with the MIAS cases. Acutance in combination with a moment-based shape measure and a Fourier descriptor-based measure gave four-group classification rate of 95% with the MIAS cases. The results indicate the importance of including lesion edge definition with shape information for classification of tumors, and that the proposed measure of acutance fills this need.
The pectoral muscle represents a predominant density region in most medio-lateral oblique (MLO) views of mammograms; its inclusion can affect the results of intensity-based image processing methods or bias procedures in the detection of breast cancer. Local analysis of the pectoral muscle may be used to identify the presence of abnormal axillary lymph nodes, which may be the only manifestation of occult breast carcinoma. We propose a new method for the identification of the pectoral muscle in MLO mammograms based upon a multiresolution technique using Gabor wavelets. This new method overcomes the limitation of the straight-line representation considered in our initial investigation using the Hough transform. The method starts by convolving a group of Gabor filters, specially designed for enhancing the pectoral muscle edge, with the region of interest containing the pectoral muscle. After computing the magnitude and phase images using a vector-summation procedure, the magnitude value of each pixel is propagated in the direction of the phase. The resulting image is then used to detect the relevant edges. Finally, a post-processing stage is used to find the true pectoral muscle edge. The method was applied to 84 MLO mammograms from the Mini-MIAS (Mammographic Image Analysis Society, London, U.K.) database. Evaluation of the pectoral muscle edge detected in the mammograms was performed based upon the percentage of false-positive (FP) and false-negative (FN) pixels determined by comparison between the numbers of pixels enclosed in the regions delimited by the edges identified by a radiologist and by the proposed method. The average FP and FN rates were, respectively, 0.58% and 5.77%. Furthermore, the results of the Gabor-filter-based method indicated low Hausdorff distances with respect to the hand-drawn pectoral muscle edges, with the mean and standard deviation being 3.84 +/- 1.73 mm over 84 images.
Diagnostic features in mammograms vary widely in size and shape. Classical image enhancement techniques cannot adapt to the varying characteristics of such features. An adaptive method for enhancing the contrast of mammographic features of varying size and shape is presented. The method uses each pixel in the image as a seed to grow a region. The extent and shape of the region adapt to local image gray-level variations, corresponding to an image feature. The contrast of each region is calculated with respect to its individual background. Contrast is then enhanced by applying an empirical transformation based on each region's seed pixel value, its contrast, and its background. A quantitative measure of image contrast improvement is also defined based on a histogram of region contrast and used for comparison of results. Using mammogram images digitized at high resolution (less than 0.1 mm pixel size), it is shown that the validity of microcalcification clusters and anatomic details is considerably improved in the processed images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.