Purpose
Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging due to transient disturbance. The transient disturbance causes vibration in the flexible object during robotic manipulation and assembly. This is an important problem as the quick suppression of undesired vibrations reduces the cycle time and increases the efficiency of the assembly process. Thus, this study aims to propose a contactless robot vision-based real-time active vibration suppression approach to handle such a scenario.
Design/methodology/approach
A robot-assisted camera calibration method is developed to determine the extrinsic camera parameters with respect to the robot position. Thereafter, an innovative robot vision method is proposed to identify a flexible beam grasped by the robot gripper using a virtual marker and obtain the dimension, tip deflection as well as velocity of the same. To model the dynamic behaviour of the flexible beam, finite element method (FEM) is used. The measured dimensions, tip deflection and velocity of a flexible beam are fed to the FEM model to predict the maximum deflection. The difference between the maximum deflection and static deflection of the beam is used to compute the maximum error. Subsequently, the maximum error is used in the proposed predictive maximum error-based second-stage controller to send the control signal for vibration suppression. The control signal in form of trajectory is communicated to the industrial robot controller that accommodates various types of delays present in the system.
Findings
The effectiveness and robustness of the proposed controller have been validated using simulation and experimental implementation on an Asea Brown Boveri make IRB 1410 industrial robot with a standard low frame rate camera sensor. In this experiment, two metallic flexible beams of different dimensions with the same material properties have been considered. The robot vision method measures the dimension within an acceptable error limit i.e. ±3%. The controller can suppress vibration amplitude up to approximately 97% in an average time of 4.2 s and reduces the stability time up to approximately 93% while comparing with control and without control suppression time. The vibration suppression performance is also compared with the results of classical control method and some recent results available in literature.
Originality/value
The important contributions of the current work are the following: an innovative robot-assisted camera calibration method is proposed to determine the extrinsic camera parameters that eliminate the need for any reference such as a checkerboard, robotic assembly, vibration suppression, second-stage controller, camera calibration, flexible beam and robot vision; an approach for robot vision method is developed to identify the object using a virtual marker and measure its dimension grasped by the robot gripper accommodating perspective view; the developed robot vision-based controller works along with FEM model of the flexible beam to predict the tip position and helps in handling different dimensions and material types; an approach has been proposed to handle different types of delays that are part of implementation for effective suppression of vibration; proposed method uses a low frame rate and low-cost camera for the second-stage controller and the controller does not interfere with the internal controller of the industrial robot.