The replication process of human immunodeficiency virus requires a number of nucleic acid annealing steps facilitated by the hybridization and helix-destabilizing activities of human immunodeficiency virus nucleocapsid (NC) protein. NC contains two CCHC zinc finger motifs numbered 1 and 2 from the N terminus. The amino acids surrounding the CCHC residues differ between the two zinc fingers. Assays were preformed to investigate the activities of the fingers by determining the effect of mutant and wild-type proteins on annealing of 42-nucleotide RNA and DNA complements. The mutants 1.1 NC and 2.2 NC had duplications of the N-and C-terminal zinc fingers in positions 1 and 2. The mutant 2.1 NC had the native zinc fingers with their positions switched. Annealing assays were completed with unstructured and highly structured oligonucleotide complements. 2.2 NC had a near wild-type level of annealing of unstructured nucleic acids, whereas it was completely unable to stimulate annealing of highly structured nucleic acids. In contrast, 1.1 NC was able to stimulate annealing of both unstructured and structured substrates, but to a lesser degree than the wild-type protein. Results suggest that finger 1 has a greater role in unfolding of strong secondary structures, whereas finger 2 serves an accessory role that leads to a further increase in the rate of annealing.