Light detection and ranging (LiDAR) is a widely used technology for the acquisition of three-dimensional (3D) information about a wide variety of physical objects and environments. However, before conducting a campaign, a test is typically conducted to assess the potential of the utilized algorithm for information retrieval. It might not be a real campaign but rather a simulation to save time and costs. Here, a multi-platform LiDAR simulation model considering the location, direction, and wavelength of each emitted laser pulse was developed based on the large-scale remote sensing (RS) data and image simulation framework (LESS) model, which is a 3D radiative transfer model for simulating passive optical remote sensing signals using the ray tracing algorithm. The LESS LiDAR simulator took footprint size, returned energy, multiple scattering, and multispectrum LiDAR into account. The waveform and point similarity were assessed with the LiDAR module of the discrete anisotropic radiative transfer (DART) model. Abstract and realistic scenes were designed to assess the simulated LiDAR waveforms and point clouds. A waveform comparison in the abstract scene with the DART LiDAR module showed that the relative error was lower than 1%. In the realistic scene, airborne and terrestrial laser scanning were simulated by LESS and DART LiDAR modules. Their coefficients of determination ranged from 0.9108 to 0.9984. Their mean was 0.9698. The number of discrete returns fitted well and the coefficient of determination was 0.9986. A terrestrial point cloud comparison in the realistic scene showed that the coefficient of determination between the two sets of data could reach 0.9849. The performance of the LESS LiDAR simulator was also compared with the DART LiDAR module and HELIOS++. The results showed that the LESS LiDAR simulator is over three times faster than the DART LiDAR module and HELIOS++ when simulating terrestrial point clouds in a realistic scene. The proposed LiDAR simulator offers two modes for simulating point clouds: single-ray and multi-ray modes. The findings demonstrate that utilizing a single-ray simulation approach can significantly reduce the simulation time, by over 28 times, without substantially affecting the overall point number or ground pointswhen compared to employing multiple rays for simulations. This new LESS model integrating a LiDAR simulator has great potential in terms of simultaneously simulating LiDAR data and optical images based on the same 3D scene and parameters. As a proof of concept, the normalized difference vegetation index (NDVI) results from multispectral images and the vertical profiles from multispectral LiDAR waveforms were simulated and analyzed. The results showed that the proposed LESS LiDAR simulator can fulfill its design goals.