<p><strong>Abstract.</strong> Light Detection and Ranging (LiDAR) is nowadays one of the most used tools to obtain geospatial data. In this paper, a method to detect and characterise power lines of both high and low voltage and their surroundings from 3D LiDAR point clouds exclusively is proposed. First, to identify points of the power lines a global search of candidate points is carried out based on the height of each point compared to its neighbours. Then, the Hough Transform (HT) is applied on the set of candidate points to extract the catenaries that belong to each power line, allowing the identification of each conductor individually. Finally, conductors located on the same power line are grouped, their geometric characteristics analysed, and the quantitative features of the surroundings are computed. A very high accuracy of power line classification is reached with these methods, while the computational time is optimised by efficient memory usage and parallel implementation of the code.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.