Virtual Reality (VR) is gaining more and more popularity as a research tool in the field of Human-Robot Interaction (HRI). To fully deploy the potential of VR and benefit HRI studies, we need to establish the basic understanding of the relationship between the physical, real-world interaction (Live) and VR. This study compared Live and VR HRI with a focus on proxemics, as proxemics preference can reflect comprehensive human intuition, making it suitable to be used to compare Live and VR. To evaluate the influence of different modalities in VR, virtual scenes with different visual familiarity and spatial sound were compared as well. Lab experiments were conducted with a physical Pepper robot and its virtual copy. In both Live and VR, proxemics preferences, the perception of the robot (competence and discomfort) and the feeling of presence were measured and compared. Results suggest that proxemic preferences do not remain consistent in Live and in VR, which could be influenced by the perception of the robot. Therefore, when conducting HRI experiments in VR, the perceptions of the robot need be compared before the experiments. Results also indicate freedom within VR HRI as different VR settings are consistent with each other.
ABSTRACTVirtual Reality (VR) is gaining more and more popularity as a research tool in the field of Human-Robot Interaction (HRI). To fully deploy the potential of VR and benefit HRI studies, we need to establish the basic understanding of the relationship between the physical, real-world interaction (Live) and VR. This study compared Live and VR HRI with a focus on proxemics, as proxemics preference can reflect comprehensive human intuition, making it suitable to be used to compare Live and VR. To evaluate the influence of different modalities in VR, virtual scenes with different visual familiarity and spatial sound were compared as well. Lab experiments were conducted with a physical Pepper robot and its virtual copy. In both Live and VR, proxemics preferences, the perception of the robot (competence and discomfort) and the feeling of presence were measured and compared. Results suggest that proxemic preferences do not remain consistent in Live and in VR, which could be influenced by the perception of the robot. Therefore, when conducting HRI experiments in VR, the perceptions of the robot need be compared before the experiments. Results also indicate freedom within VR HRI as different VR settings are consistent with each other.