The photonic energy of terahertz wave is in the same order of magnitude as the rotational and vibrational energy levels of organic and biological macromolecules, so it has unique advantages in detecting cells and biological macromolecules. However, in the life environment, the dynamic time scale of cell-environment interaction and structural conformation change of biological macromolecules are within picosecond to millisecond, and water has strong absorption to terahertz wave, which has become the bottleneck problem for the detection of cells and biological macromolecules by terahertz technology. In this article, we developed a set of terahertz single measurement system based on the tilt wave front of grating pulse technique. The system was employed for the terahertz detection of trace living cervical cancer cells. We achieved transient detection of the terahertz pulse time-domain waveform of the living HeLa cells. The characteristic absorption peaks were identified by Lambert-Beer law, respectively, at 0.49, 0.71, 1.04, 1.07, 1.26 and 1.37 THz. The absorbance is proportional to the cell concentration.