The systemic response to ischemia-reperfusion that occurs after a cardiac arrest (CA) followed by the return of spontaneous circulation leads to endothelial toxicity and cytokine production, both responsible for the subsequent occurrence of severe cardiocirculatory dysfunction and early death. Resistin is emerging as a biomarker of proinflammatory status and myocardial ischemic injury and as a mediator of endothelial dysfunction. The study aimed to analyze the possible associations between several clinical and biological variables and the serum levels of resistin in CA survivors. Forty patients with out-of-hospital resuscitated CA, were enrolled in the study. Demographic, clinical and laboratory data (including serum resistin measurements at admission and at 6, 12, 24, 48 and 72 h) were recorded. For resistin, we calculated the area under the curve (AUC) using the trapezoidal method with measurements from 0 to 12 h, 0 to 24 h, 0 to 48 h and 0 to 72 h. Fifteen (37.5%) patients died in the first 72 h after CA. Cardiovascular comorbidities were present in 65% of patients. The majority of patients had post-CA shock (29 (72.5%)). Resistin serum levels rose in the first 12–24 h and decreased in the next 48–72 h. In univariate analysis, advanced age, longer duration of resuscitation, high sequential organ failure assessment score, high lactate levels, presence of cardiovascular comorbidities and the post-CA shock were associated with higher resistin levels. In multivariate analysis, post-CA shock or cardiovascular comorbidities were independently associated with higher AUCs for resistin for 0–12 h and 0–24 h. The only identified variable to independently predict higher AUCs for resistin for 0–48 h and 0–72 h was the presence of post-CA shock. Our data demonstrate strong independent correlation between high serum resistin levels, cardiac comorbidities and post-CA shock. The impact of the post-CA shock on serum concentration of resistin was greater than that of cardiac comorbidities.