In the struggle for survival in a complex and dynamic environment, nature has developed a multitude of sophisticated sensory systems. In order to exploit the information provided by these sensory systems, higher vertebrates reconstruct the spatio-temporal environment from each of the sensory systems they have at their disposal. That is, for each modality the animal computes a neuronal representation of the outside world, a monosensory neuronal map. Here we present a universal framework that allows to calculate the specific layout of the involved neuronal network by means of a general mathematical principle, viz., stochastic optimality. In order to illustrate the use of this theoretical framework, we provide a step-by-step tutorial of how to apply our model. In so doing, we present a spatial and a temporal example of optimal stimulus reconstruction which underline the advantages of our approach. That is, given a known physical signal transmission and rudimental knowledge of the detection process, our approach allows to estimate the possible performance and to predict neuronal properties of biological sensory systems. Finally, information from different sensory modalities has to be integrated so as to gain a unified perception of reality for further processing, e.g., for distinct motor commands. We briefly discuss concepts of multimodal interaction and how a multimodal space can evolve by alignment of monosensory maps.