When dissimilar monocular images are viewed simultaneously by the two eyes, stable binocular vision gives way to unstable vision characterized by alternations in dominance between the two images in a phenomenon called binocular rivalry. These alternations in perception reveal the existence of inhibitory interactions between neural representations associated with conflicting visual inputs. Binocular rivalry has been studied since the days of Wheatstone, but one recent strategy is to investigate its susceptibility to influences caused by one's own motor activity. This paper focused on the activity of walking, which produces an expected, characteristic direction of optic flow dependent upon the direction of one's walking. In a set of experiments, we employed virtual reality technology to present dichoptic stimuli to observers who walked forward, backward, or were sitting. Optic flow was presented to a given eye, and was sometimes congruent with the direction of walking, sometimes incongruent, and sometimes random, except when the participant was sitting. Our results indicate that, while walking had a reliable influence on rivalry dynamics, the predominance of congruent or incongruent motion did not.