As science and technology evolve, object detection of moving objects has been widely used in the context of machine learning and artificial intelligence. Traditional moving object detection algorithms, however, are characterized by relatively poor real-time performance and low accuracy in detecting moving objects. To tackle this issue, this manuscript proposes a modified Kalman filter algorithm, which aims to expand the equations of the system with the Taylor series first, ignoring the higher order terms of the second order and above, when the nonlinear system is close to the linear form, then it uses standard Kalman filter algorithms to measure the situation of the system. which can not only detect moving objects accurately but also has better real-time performance and can be employed to predict the trajectory of moving objects. Meanwhile, the accuracy and real-time performance of the algorithm were experimentally verified.