“…Global approaches, best characterized by Shneiderman's mantra "overview, zoom & filter, details-on-demand" pattern in visual information seeking [42], have conventionally received much attention and have worked well for numerous kinds of data in many domains [43], [44], [45], [46], [47], [48], [49], [50], [42]. However, in this big data era, top-down approaches that focus on providing overviews of global information landscapes face significant challenges when applied to graphs with millions or billions of nodes and edges [49], [50]: graph overviews for large graphs are time-consuming to generate [8], [7]; the seminal work on graph clustering by Leskovec & Faloutsos [9] suggests there are simply no perfect overviews (i.e., no single best way to partition graphs into smaller communities), a view echoed by sensemaking literature in that people may have very different mental representations of information depending on their individual goals and prior experiences [51].…”