This article introduces a previously undescribed method progressively visualizing the evolution of a knowledge domain's cocitation network. The method first derives a sequence of cocitation networks from a series of equal-length time interval slices. These time-registered networks are merged and visualized in a panoramic view in such a way that intellectually significant articles can be identified based on their visually salient features. The method is applied to a cocitation study of the superstring field in theoretical physics. The study focuses on the search of articles that triggered two superstring revolutions. Visually salient nodes in the panoramic view are identified, and the nature of their intellectual contributions is validated by leading scientists in the field. The analysis has demonstrated that a search for intellectual turning points can be narrowed down to visually salient nodes in the visualized network. The method provides a promising way to simplify otherwise cognitively demanding tasks to a search for landmarks, pivots, and hubs.
A multiple-perspective co-citation analysis method is introduced for characterizing and interpreting the structure and dynamics of co-citation clusters. The method facilitates analytic and sense making tasks by integrating network visualization, spectral clustering, automatic cluster labeling, and text summarization. Co-citation networks are decomposed into co-citation clusters. The interpretation of these clusters is augmented by automatic cluster labeling and summarization. The method focuses on the interrelations between a co-citation cluster's members and their citers. The generic method is applied to a three-part analysis of the field of Information Science as defined by 12 journals published between 1996 and 2008: 1) a comparative author co-citation analysis (ACA), 2) a progressive ACA of a time series of co-citation networks, and 3) a progressive document co-citation analysis (DCA). Results show that the multipleperspective method increases the interpretability and accountability of both ACA and DCA networks.
Purpose We present a systematic review of the literature concerning major aspects of science mapping to serve two primary purposes: First, to demonstrate the use of a science mapping approach to perform the review so that researchers may apply the procedure to the review of a scientific domain of their own interest, and second, to identify major areas of research activities concerning science mapping, intellectual milestones in the development of key specialties, evolutionary stages of major specialties involved, and the dynamics of transitions from one specialty to another. Design/methodology/approach We first introduce a theoretical framework of the evolution of a scientific specialty. Then we demonstrate a generic search strategy that can be used to construct a representative dataset of bibliographic records of a domain of research. Next, progressively synthesized co-citation networks are constructed and visualized to aid visual analytic studies of the domain’s structural and dynamic patterns and trends. Finally, trajectories of citations made by particular types of authors and articles are presented to illustrate the predictive potential of the analytic approach. Findings The evolution of the science mapping research involves the development of a number of interrelated specialties. Four major specialties are discussed in detail in terms of four evolutionary stages: conceptualization, tool construction, application, and codification. Underlying connections between major specialties are also explored. The predictive analysis demonstrates citations trajectories of potentially transformative contributions. Research limitations The systematic review is primarily guided by citation patterns in the dataset retrieved from the literature. The scope of the data is limited by the source of the retrieval, i.e. the Web of Science, and the composite query used. An iterative query refinement is possible if one would like to improve the data quality, although the current approach serves our purpose adequately. More in-depth analyses of each specialty would be more revealing by incorporating additional methods such as citation context analysis and studies of other aspects of scholarly publications. Practical implications The underlying analytic process of science mapping serves many practical needs, notably bibliometric mapping, knowledge domain visualization, and visualization of scientific literature. In order to master such a complex process of science mapping, researchers often need to develop a diverse set of skills and knowledge that may span multiple disciplines. The approach demonstrated in this article provides a generic method for conducting a systematic review. Originality/value Incorporating the evolutionary stages of a specialty into the visual analytic study of a research domain is innovative. It provides a systematic methodology for researchers to achieve a good understanding of how scientific fields evolve, to recognize potentially insightful patterns from visually encoded signs, and to synthesize various information so as to capture the state of the art of the domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.