The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nano-scale conformal coatings. Here, we fabricate novel photo-lithographically defined CNT pillars that are conformally coated with amorphous silicon carbide (a-SiC) to strengthen the interlocking of individual CNTs at junctions using low pressure chemical vapour deposition (LPCVD). We further quantify the mechanical response by performing flat-punch nanoindentation measurements on coated CNT pillars with various high-aspect-ratios. We discovered new mechanical failure modes of coated CNT pillars, such as "bamboo" and brittle-like composite rupture as coating thickness increases. Furthermore, a significant increase in strength and modulus is achieved. For CNT pillars with high aspect ratio (1:10) and coating thickness of 21.4 nm, the compressive strength increases by an order of magnitude of 3, towards 1.8 GPa (from below 1 MPa for uncoated CNT pillars) and the elastic modulus increases towards 125 GPa. These results show that our coated CNT pillars, which can serve as vertical interconnects and 3D super-capacitors, can be transformed into robust high-aspectratio 3D-micro architectures with semiconductor device compatible processes.