Abstract. This study was designed to investigate the direct effects of fatty acids (FAs) on the cell viability and the expression levels of genes involved in lipid metabolism in LO2 human liver cells. Palmitate (PA), oleate (OA) and docosahaexenoic acid (DHA) were used to represent saturated, mono-unsaturated and polyunsaturated FAs, respectively. At concentrations of ≤3.2 µg/ml, treatment with single FAs increased the viability of the LO2 cells. At FA concentrations of >3.2 µg/ml, cell viability following OA treatment was increased, but PA or DHA treatment at these concentrations reduced cell viability. Administration of mixtures of these FAs in three ratios (PA:OA:DHA = 1:2:1, 1:1:1 and 1:1:2, respectively) increased the cell viability compared with the control group. The intracellular triglyceride (TG) levels following all types of treatment were significantly increased and the accumulation of TGs was markedly increased with high doses of DHA. In addition, peroxisome proliferator-activated receptor-γ was significantly upregulated in all groups, with the exception of the 1:1:1 group at 3.2 µg/ml and the 1:1:2 group at 12.8 µg/ml. The expression levels of sterol regulatory-element binding protein-1c, liver X receptor α and apolipoprotein C-I were significantly reduced in all groups with the exception of the DHA-treated group and the 1:2:1 groups at 3.2 and 12.8 µg/ml. In conclusion, these results indicate that the type, concentration and mixture ratios of FAs are all important in determining the cell viability and lipid metabolism-related gene expression in LO2 hepatocytes.