Aims
The study aimed to investigate the value of autoantibodies in predicting the risk of ketoacidosis or microalbuminuria in children with type 1 diabetes mellitus.
Methods
Clinical data and laboratory indicators of 80 patients with type 1 diabetes admitted to the Department of Endocrinology in Tianjin Children's Hospital, from June 2017 to March 2019, were retrospectively analyzed. The patients were divided into two groups: diabetes without ketoacidosis group (n = 20) and diabetes with ketoacidosis group (n = 60). The differences in general data, laboratory test indexes, and autoantibodies between the two groups were analyzed. Finally, ROC curves and multivariate logistic regression analysis were used to explore the value of autoantibodies in patients with ketoacidosis or microalbuminuria.
Results
A total of 80 children with type 1 diabetes were assessed, including 35 boys and 45 girls, ranging in age from 10 months to 15 years. The concentration of GADA, IA2A, and ZnT8A was not statistically different between the two groups, but the positive rate of ZnT8A was statistically significant (p = 0.038) and had a diagnostic value for the occurrence of ketoacidosis (p = 0.025). ZnT8A‐positive patients had a higher titer of IA2A and a more frequent prevalence of GADA and IA2A than ZnT8A‐negative patients (p < 0.01). In multivariate logistic regression analyses, the presence of positive ZnT8A was associated with a higher risk of microalbuminuria independent of age, sex, and BMI (OR = 4.184 [95% CI 1.034~16.934], p = 0.045).
Conclusions
The positive ZnT8A had diagnostic value for ketoacidosis in children with type 1 diabetes and had the highest specificity among the three kinds of autoantibodies. Moreover, ZnT8A positivity was related to a higher titer of IA2A and more frequent occurrence of multiple diabetes‐related autoantibodies. Besides, the presence of positive ZnT8A was an independent risk factor of microalbuminuria in children with type 1 diabetes. Therefore, we can infer that positive ZnT8A may be related to ketoacidosis and microalbuminuria, accelerating the progression of T1DM.