In recent years, mammalian oocytes have been proposed to have important roles in the orchestration of ovarian follicular development and fertility. To determine whether intra-oocyte Foxo3a, a component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, influences follicular development and female fertility, a transgenic mouse model was generated with constitutively active Foxo3a expressed in oocytes. We found that the female transgenic mice were infertile, which was caused by retarded oocyte growth and follicular development, and anovulation. Further mechanistic studies revealed that the constitutively active Foxo3a in oocytes caused a dramatic reduction in the expression of bone morphogenic protein 15 (Bmp15), connexin 37 and connexin 43, which are important molecules for the establishment of paracrine and gap junction communications in follicles. Foxo3a was also found to facilitate the nuclear localization of p27 kip1 in oocytes, a cyclin-dependent kinase (Cdk) inhibitor that may serve to inhibit oocyte growth. The results from the current study indicate that Foxo3a is an important intra-oocyte signaling molecule that negatively regulates oocyte growth and follicular development. Our study may therefore give some insight into oocyte-borne genetic aberrations that cause defects in follicular development and anovulation in human diseases, such as premature ovarian failure.
C/EBP homologous protein (CHOP), known also as DNA damage-inducible transcript 3 and as growth arrest and DNA damage-inducible protein 153 (GADD153), is induced in response to certain stressors. CHOP is universally acknowledged as a main conduit to endoplasmic reticulum stress-induced apoptosis. Ongoing research established the existence of CHOP-mediated apoptosis signaling networks, for which novel downstream targets are still being determined. However, there are studies that contradict this notion and assert that apoptosis is not the only mechanism by which CHOP plays in the development of pathologies. In this review, insights into the roles of CHOP in pathophysiology are summarized at the molecular and cellular levels. We further focus on the newest advances that implicate CHOP in human diseases including cancer, diabetes, neurodegenerative disorders, and notably, fibrosis.
A large amount of information has accumulated over the past decade on how gonadotropins, steroid hormones and growth factors regulate development of the mammalian ovarian follicle. Moreover, the bi-directional communication between mammalian oocytes and their surrounding somatic (granulosa) cells has also been shown to be crucial for this process. The intra-ovarian factors, or more specifically, the intra-oocyte signaling pathways that control oocyte growth and early follicular development are largely unknown, however. Based on both in vitro studies and in vivo functional studies using gene-modified mouse models, this review focuses on the key features of the phosphatidylinositol 3 kinase (PI3K) pathway in growing mouse oocytes and on the novel functions of the oocyte PI3K pathway in controlling mammalian oocyte growth and follicular development that have come to light only recently. We propose that the PI3K pathway in the oocyte, which is activated by granulosa cell-produced Kit ligand (KL) via the oocyte-surface receptor Kit, may serve as an intra-oocyte network that regulates both oocyte growth and the early development of ovarian follicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.