Liposome-based drug
delivery systems composed of DOPE stabilized
with cholesteryl hemisuccinate (CHMS) have been proposed as a drug
delivery mechanism with pH-triggered release as the anionic form (CHSa)
is protonated (CHS) at reduced pH; PEGylation is known to decrease
this pH sensitivity. In this manuscript, we set out to use molecular
dynamics (MD) simulations with a model with all-atom resolution to
provide insight into why incorporation of poly(ethyleneglycol) (PEG)
into DOPE–CHMS liposomes reduces their pH sensitivity; we also
address two additional questions: (1) How CHSa stabilizes DOPE bilayers
into a lamellar conformation at a physiological pH of 7.4? and (2)
how the change from CHSa to CHS at acidic pH triggers the destabilization
of DOPE bilayers? We found that (A) CHSa stabilizes the DOPE lipid
membrane by increasing the hydrophilicity of the bilayer surface,
(B) when CHSa changes to CHS by pH reduction, DOPE bilayers are destabilized
due to a reduction in bilayer hydrophilicity and a reduction in the
area per lipid, and (C) PEG stabilizes DOPE bilayers into the lamellar
phase, thus reducing the pH sensitivity of the liposomes by increasing
the area per lipid through penetration into the bilayer, which is
our main focus.