The study of Extremely-Low-Frequency (ELF) and Very-Low-Frequency (VLF) waves in space has been intensively pursued in the past decade. Search coil magnetometers, magnetic loop antennas, and electric dipole antennas have been carried on board many spacecraft. The measurements performed by these instruments have revealed a multitude of wave phenomena, whose study in turn is providing a wealth of information on the physics of the magnetospheric and ionospheric plasma. Two classes of wave phenomena are observed: whistlers and emissions. The observed whistler phenomena include: multiple hop ducted whistlers, ion-cutoff whistlers, ion cyclotron whistlers, subprotonospheric whistlers, magnetospherically reflected whistlers and walking trace whistlers.The emissions observed at high altitudes near the magnetic equator differ in many respects from those observed at low altitudes near the ionosphere. At high altitudes, inside the plasmasphere ELF hiss is the dominant emission and outside the plasmasphere chorus is the dominant emission. Also seen is a sub-LHR hiss band in the outer plasmasphere near the equator, and high pass noise and broadband noise in the outer nightside magnetosphere. At low altitude both ELF hiss and chorus are present but, here, ELF hiss is the dominant emission even outside the plasmasphere. Additional emissions, specific to low altitudes, such as VLF hiss and LHR noise are also observed. Although the observations of these phenomena by spacecraft have been complemented by many ground-based and rocket borne studies as well as by spacecraft observations of man-made signals, this paper reviews only satellite observations of signals of natural origin.