In this paper, the single-walled carbon nanotube (SWCNT) with graphene nanoribbon (GNR) inside, namely GNR@SWCNT, is proposed as alternative conductor material for the interconnect applications. The equivalent circuit model is established, and the circuit parameters extracted analytically. By virtue of the equivalent circuit model, the signal transmission performance of GNR@SWCNT bundle interconnect is evaluated and compared with its Cu and SWCNT counterparts. The optimal repeater insertions in global-and intermediate-level GNR@SWCNT bundle interconnect are studied. Moreover, it is demonstrated that the GNR@SWCNT interconnects could provide superior performance, indicating that GNR@SWCNT structure would be beneficial for development of future carbon-based integrated circuits and systems.