Depth information has been used in many fields because of its low cost and easy availability, since the Microsoft Kinect was released. However, the Kinect and Kinect-like RGB-D sensors show limited performance in certain applications and place high demands on accuracy and robustness of depth information. In this paper, we propose a depth sensing system that contains a laser projector similar to that used in the Kinect, and two infrared cameras located on both sides of the laser projector, to obtain higher spatial resolution depth information. We apply the block-matching algorithm to estimate the disparity. To improve the spatial resolution, we reduce the size of matching blocks, but smaller matching blocks generate lower matching precision. To address this problem, we combine two matching modes (binocular mode and monocular mode) in the disparity estimation process. Experimental results show that our method can obtain higher spatial resolution depth without loss of the quality of the range image, compared with the Kinect. Furthermore, our algorithm is implemented on a low-cost hardware platform, and the system can support the resolution of 1280 × 960, and up to a speed of 60 frames per second, for depth image sequences.
This paper presents a Very large scale integration (VLSI) design method for Three‐dimensional (3D) depth perception chip based on infrared coding structure light. The primary sub‐modules on the chip contain the speckle pattern preprocessing module, block‐matching disparity estimation, depth mapping and post‐processing. The chip employs pipelining technology, and after Application specific integrated circuit (ASIC) verification, it proves that our chip has more advantages in performance of depth precision (12bits, 1mm @ 1m), image resolution (1280×960), time delay (less than 17ms), range limit (0.4~6m). It also can generate more stable and smooth depth map in real‐time, which can be used in 3D recognition, motion capture or scene perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.