In today’s digital world, Arithmetic computations have been evolved as a core factor in digital signal processors, micro-controllers, and systems using arithmetic and logical operations such as adders, multipliers, image processors, and signal processors. One of the elements that play an important role in performing arithmetic calculations is an adder. Among many adders, the Carry Select Adder produces less propagation delay. However, there may be an increased delay, power consumption, and area required in the case of a normal Carry Select Adder. To overcome the mentioned drawbacks, an improved model of Carry Select Adder has been designed that uses Binary to Excess – 1 Converter. Instead of using multiple blocks of Ripple Carry Adders (RCAs), it is efficient and effective if one of the blocks is replaced with Binary to Excess – 1 Converter. As a result, we can achieve a high speed adder with minimal delay, minimal power, and reduced area.