2009 35th Annual Conference of IEEE Industrial Electronics 2009
DOI: 10.1109/iecon.2009.5414837
|View full text |Cite
|
Sign up to set email alerts
|

Voice coil actuators: From model and simulation to automotive application

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2013
2013
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(3 citation statements)
references
References 12 publications
0
2
0
1
Order By: Relevance
“…MMLAs are widely used in applications varying from transportation, automation and robotics [14, 15]. The operating principle of the MMLA is closely related with the permanent magnet linear motors and tubular linear oscillating motors typically applied under longer distances [16, 17].…”
Section: Introductionmentioning
confidence: 99%
“…MMLAs are widely used in applications varying from transportation, automation and robotics [14, 15]. The operating principle of the MMLA is closely related with the permanent magnet linear motors and tubular linear oscillating motors typically applied under longer distances [16, 17].…”
Section: Introductionmentioning
confidence: 99%
“…The equivalent circuit diagram is shown in Fig. 4 [6] and the equation of voltage can be expressed as (3) [7] . In Fig.…”
Section: Vibration Isolation Systemmentioning
confidence: 99%
“…En diversas aplicaciones de gran precisión como la reportada en este trabajo, el acoplamiento mecánico, las fluctuaciones de voltaje y corriente de la fuente de energía que alimenta el actuador, y las inevitables incertidumbres paramétricas, dificultan garantizar la robustez en el control de posición y de velocidad del servo sistema (Baronti et al, 2009;Tran and Hwang, 2020). En ese sentido, el esquema de control por rechazo activo de perturbaciones ADRC (de sus siglas en inglés, Active Disturbance Rejection Control) introducido por (Han, 2009) es muy atractivo, ya que se basa en la capacidad de estimar en línea, vía un observador de estado extendido ESO (por sus siglas en inglés, Extended State Observer), la parte de la dinámica desconocida del sistema a controlar, así como todos los efectos externos adversos, para posteriormente cancelarlos mediante una apropiada ley de control, (Sira-Ramírez et al, 2015.…”
Section: Introductionunclassified